
MAVLink plugin for the Dolphin language

Nuno Gonçalo Neto Martingo
Department of Computer Sciences - 2019/2020

Faculty of Sciences - University of Porto

March 26, 2020

Abstract

Dolphin is a domain-specific language for programming autonomous vehicle networks. A
Dolphin script describes an orchestrated execution of tasks that are assigned dynamically
to multiple vehicles and that can be composed concurrently, sequentially or in an event-
based manner. We developed a Dolphin DSL plugin to support integration with a widely
used standard for drone communications, the MAVLink protocol. This report describes the
design and implementation of the plugin and associated validation tests. All these tests were
conducted using an ArduPilot software-in-the-loop simulation environment.

1 INTRODUCTION

The use of autonomous vehicles has seen a great increase in the last few years due to its incredi-
ble versatility and increasing ease of use, as the piloting and control of these vehicles has gotten
significantly easier alongside the evolution of the technology driving these vehicles in motor, com-
munication, batteries, etc. Autonomous vehicles are nowadays used for a variety of scientific,
military and civilian applications. In addition, several vehicles are increasingly deployed together
in a dynamic networked environment that also includes human operators and external sensors in
the control loop, motivating the need for effective tools for programming these systems as a whole.

Dolphin [1] is a domain-specific language (DSL) with these concerns in mid, available open-
source (https://dolphindsl.github.io). A Dolphin program expresses an orchestrated
execution of tasks that are defined for multiple vehicles dynamically available in a network. Dol-
phin provides operators for composing one-vehicle tasks running in different vehicles for instance
according to concurrent, sequential or event-based program flow. Previously, a Dolphin plugin has
been developed for an open-source toolchain [2] for autonomous vehicles developed by Laboratório
de Sistemas e Tecnologias Subaquáticas (LSTS), which has been tested in real-world operations
during the REP-17 exercise co-organised by LSTS and the Portugues Navy [3].

This report documents the addition of a MAVLink [4] plugin to the Dolphin language. MAVLink
is an extremely popular and widely used communication protocol for communicating with au-
tonomous vehicles based on the ArduPilot platform [5]. The plugin provides a Dolphin DSL
extension to express MAVLink missions. These are one-vehicle tasks that consist of sequences of
individual maneuvers (i.e takeoff, land, waypoint tracking, loitering) and commands (e.g. take a
photo). To allow these extensions, the plugin also includes all the necessary bindings to deal with
the MAVLink protocol and to communicate with MAVLink-enabled vehicles.

The rest of the paper is structured as follows. In Section 2.1 we present Dolphin in terms of
the underlying architecture along with some example scenarios, operators and platform bindings.
Section 2.2 describes the MAVLink communication protocol, what it is, packet structure and why
it was necessary to add support for it to Dolphin. Section 3 describes how to use and presents
some examples of actually using the plugin. Section 3.1 provides some examples of this plugin in
action. Section 3.2 describes how this plugin was implemented and how it relates with the existing
Dolphin API. Section 4 describes the testing setup used throughout the report. Finally, Section 5
ends the report with concluding remarks and discussion of future work.

https://dolphindsl.github.io

Core
Dolphin DSL

Platform
DSL extensions Platform

runtime

Groovy runtime

Dolphin
engine

Java SE API

Java Virtual Machine

network
links

autonomous
vehicles

programuser

Figure 1: The architecture of Dolphin

2 Background

2.1 Dolphin

The architecture of Dolphin is illustrated in Figure 1. The Dolphin engine runs a centralised
program, where a single base station controls and monitors all of the autonomous vehicles that
are connected to it over the network. The language itself is embedded in Groovy that provides a
number of features for defining the DSL (e.g. operator overloading, meta-class programming or
the use of closures [6].

The execution engine is programmed in Java and concrete platform instantiations through plu-
gins may extend the DSL and need to provide a runtime for networked interaction, implementing
abstract Java bindings provided by the Dolphin engine.

We can find a simple usage of Dolphin in Listing 1, taken from [3], illustrating in this case
the integration with the LSTS toolchain. The program concurrently runs 3 plans in 3 different
autonomous vehicles, showing some of the possibilities for task orchestration.

The example provided in Listing 1 is composed of the following:

• We first start by picking three UUVs with the pick command. In this pick command we
specify the details of the vehicles that we want to choose. In this case we want 3 vehicles
(count 3) that are of the UUV type (type ’UUV’ (Unmanned underwater vehicle)) that
are situated in the area Comporta and that are equipped with a side-scan sonar (payload
’Sidescan’). These selected vehicles are then stored in the variable UUVs.

• After the selection of the vehicles, we then set the connection timeout at 10 minutes (setConnectionTimeout
10.minutes) as the UUVs may be underwater for an extended amount of time and might

not be able to communicate very frequently.

• Finally we have the execution of the tasks. This is specified by the execute instruction,
that tasks the vehicles with three plans, corresponding to ocean surveys in separate areas.
These surveys will be executed concurrently (one survey per vehicle), as specified by the use
of the ”|” Dolphin operator.

Listing 1: Example Dolphin Program

1 // Define area of operation.
2 Comporta = (location 38.43462, -8.86118) ˆ 2.km
3
4 // Select UUVs.
5 UUVs = pick {
6 count 3
7 type ’UUV’
8 region Comporta
9 payload ’Sidescan’

10 }
11
12 // Set connection timeout.
13 setConnectionTimeout 10.minutes
14
15 // Execute ocean surveys.
16 execute UUVs:
17 imcPlan[’survey1’] |
18 imcPlan[’survey2’] |
19 imcPlan[’survey3’]
20
21 // End!
22 message ’Done!’

To provide a brief idea of other of other compositions supported by Dolphin, Figure 2 depicts
a BNF-like grammar for task specifications, (taken from [1]).

Task := PlatformTask // Platform task
| action ’{’ Code ’}’ // Program-level action
| condition ’{’ Cond ’}’ // Program-level condition
| Task ’>>’ Task // Sequential composition
| Task ’|’ Task // Concurrent composition
| Task ’[’ VSet ’]’ // Vehicle set allocation
| allOf ’{’ WhenThen+ ’}’ // All-of block
| oneOf ’{’ WhenThen+ ’}’ // One-of block (choice)
| waitFor ’{’ Cond ’}’ // Execution subject

then Task // to start condition
| until ’{’ Cond ’}’ // Execution subject

run Task // to stop condition
| idle Time // Idle task
| during Time // Execution subject

run Task // to time limit
| watch Task // Error handling

onError ’{’ Code ’}’
WhenThen := when ’{’ Cond ’}’ then Task

Figure 2: Grammar for Dolphin tasks.

2.2 MAVLink

MAVLink is a very lightweight messaging protocol for communicating with autonomous vehicles.
It follows a hybrid publish-subscribe and point-to-point design pattern: Data streams are sent /
published as topics while configuration subprotocols are point-to-point with retransmission. It is
also extremely versatile as it supports many programming languages and can be run on micro
controllers, which is perfect for low power high efficiency autonomous vehicles and is also very
reliable as it provides methods for detecting packet drops, corruption and packet authentication.

MAVLink uses UDP datagrams to send information between the base station and vehicles and
vice-versa. These datagrams (also known as packets) follow a specific format which is dependent
on the version that you are using. There are 2 versions of the MAVLink standard, each of which
has it’s own datagram format. In this report we will only discuss the version 2 of the MAVLink
standard as that is what we are using. The format for MAVLink 2 datagrams can be found in
Figure 3.

Each of the packet’s fields are described in the table found in Table 1.
These datagrams are represented in Java by the class MAVLinkMessage, which stores the

base parameters for every message like LEN, SEQ, SYSID, COMPID, MSGID, CHECKSUM among

Figure 3: MAVLink 2 packet format

Table 1: Description of each of the MAVLink 2 packet fields

Field: Description:

STX Protocol specific start of packet marker to indicate when a new
packet has started. In MAVLink 2 the value in this field is 0xFD
(253)

LEN Specifies the length of the PAYLOAD section of the packet.

INC FLAGS Specifies some flags that must be understood for MAVLink com-
patibility. (The packet is discarded if the implementation does
not understand these flags)

CMP FLAGS Specifies some flags that can be ignored if not understood. (The
packet is not discarded even if the implementation does not un-
derstand these flags)

SEQ This is used to detect packet loss. This field is increased with
every packet sent.

SYSID The ID of the system that has sent or that is suposed to re-
ceive the message. This is used to differentiate systems on the
network. (All UAVs will communicate in the same port).

COMPID The ID of the component sending or receiving the message. This
is used to between different systems inside a UAV.

MSGID ID of the message type that is in the payload. (This is what is
used to decide what subclass of MAVLinkMessage is used to
read the information in the packet)

PAYLOAD The data of the message. The contents of this will depend on
the message type (Defined in MSGID) and the contents of the
message.

CHECKSUM This contains an X.25 CRC of the message, to allow for er-
ror detection during the sending of the packet. Packets who’s
CHECKSUM does not add up will be discarded.

others. This information is then used to decide which sub class of MAVLinkMessage should be
picked to read and process the data found in the PAYLOAD. Each subclass has it’s own different
parameters that mean different things, but they all use the same packet base format, as they’re
all extensions of the MAVLinkMessage class.

How does MAVLink use the UDP datagrams?
To send and receive these datagrams both the base station and vehicles initiate a server that

listens on a specific port p that must be the same on both ends, this port is defined by the user
and should be set to a port without a lot of communication as this can interfere with the signal
and cause packet drops and data loss. In this project, the base station’s server is handled by a
class called MAVLinkCommunications, more on this in Section 3.2.

The software used for the test scenarios present in this report (ArduPilot [5], QGroundCon-
trol [7]) also uses MAVLink as the communication standard, making it easier to test scenarios
before actually deploying them out in the real world as both the test simulation and real world ve-
hicles use exactly the same packet format, which provides a seamless transition between simulation
and reality.

MAVLink also implements a feature called micro-services [4] which define higher-level protocols
that MAVLink systems can adopt in order to better inter-operate. These micro-services are used
to exchange many types of data, if the data can’t fit into a single message, services will define how

the data is split and re-assembled and how to ensure that any lost data is re-transmitted.
In this report we are going to focus mainly in the Mission Protocol service. This service

allows a base station to manage the mission (flight plan) of an autonomous vehicle and follows the
client/server pattern where operations are initiated by the base station and acknowledged by the
vehicle. It also supports re-request of messages that have not been delivered, allowing missions to
be reliably transferred over a lossy link, as can be seen in Figure 4.

Figure 4: Mission upload protocol. GCS is the base station (Ground Control Station)

The Mission Protocol works by splitting a mission into a series of points that each have their
own sequence number seq, which get executed by the UAV. While executing the mission, the UAV
will report back with the base station with information about the mission like the current point
it’s heading for and when it has successfully reached a point. It does this by sending message to
the base station with the seq number of the point that the UAV is referring to.

3 The MAVLink Plugin for Dolphin

We will now go into more detail about the plugin. This plugin adds a great list of commands to
allow the user to create the missions. All of these commands can be found in Appendix A. Each
of the commands represents an extension of the MissionPoint or DroneCommand, depending on
what command it is, more on this in Section 3.2. We will demonstrate how to use these commands
and also some of their capabilities and use cases via examples found in Section 3.1.

3.1 Examples

We now present some examples and their corresponding Dolphin program. The scenarios here
represented are some possible ways to harness this technology to try to help improve society using
in this case UAVs (Unmanned Aerial Vehicles). Each scenarios shows a way this technology can be
used ranging from single vehicle, two vehicles performing independent tasks or even an arbitrary
number of vehicles that rely on the status of other vehicles on their network to know their mission.
In the situations we present here, it would be of great use to have sensors attached to the drones
that we are using, to record data on the area that is being analysed. This is possible with Dolphin

Listing 2: Single vehicle Dolphin Program

1 homePos = location(40.444233, -7.375234, 820)
2 takeOffLocation = location(40.444233, -7.375234, 1200)
3 simpleMission = mission {
4 name "Survey Area"
5 home homePos
6 takeOff takeOffLocation
7 move 100, 200, 100
8 moveAndLoiterPos 200, 100, -20, 50
9 }

10 returnHome = mission {
11 name "Return to base"
12 home homePos
13 returnHomeAndLand()
14 }
15 //Execute the task
16 while (true) {
17 v1 = pick {
18 type ’UAV’
19 timeout 30.seconds
20 }
21 execute v1:
22 waitFor {battery(v1) >= 0.9}
23 then ((simpleMission / {battery(v1) < 0.3})
24 >> returnHome)
25 //Release the drone for other possible tasks
26 release v1
27 }

and MAVLink but is not used here because ArduPilot does not simulate sensors, more on this in
Section 5.

3.1.1 Example 1 - Single Vehicle

The example found in Listing 2 shows how Dolphin can be used to program a vehicle for a moving
between a few points and then loitering (going in circles around the point) and returning to base
when the battery is low. This is a just an extremely simple example of the possibilities that this
technology can offer.

In Listing 2 we first start off by defining the base location of the mission homePos = location

(...) this will be the home location and is assumed to be the location of a charging station for
the drones, we also declare the takeOffLocation which basically tells the UAV what height it
must reach before moving on to it’s next mission point. Afterwards we define the main mission for
the vehicle with simpleMission = mission {...}, we instruct the drone to move 100 meters
north, 200 meters east and 100 meters up and following that we tell it to move 200 meters north,
100 meters east and 20 meters down and loiter this position indefinitely. After that we also define
the mission for the drone to execute when the battery is low with returnHome = mission {...}

which just tells the drone to return to the home position and attempt to land.
Now that the missions and locations are defined, we must assign them to the UAV. We do this

by selecting one UAV from the available vehicles connected to the base station with pick. After
we’ve chosen a UAV, we instruct Dolphin to execute the task with execute v1, this means we
are telling Dolphin to explicitly use v1 to complete this task. The task then waits for the battery
of the UAV to be at 90% or more with waitFor {...} then ... and when the battery is at the
required level, it then receives the task that is found after the then This is a composed task
which is comprised of the following:

• First we have the simpleMission / {battery(v1)< 0.3} task. The / operator means
that the UAV will execute the simpleMission until the condition within {...} is met, in
this case battery(v1)< 0.3.

• After that condition is met, the first part of the task is completed and we get to the second
part of the task, (...)>> returnHome. The task1 >> task2 operator means that task2

Listing 3: Multiple vehicles without interaction Dolphin Program

1 //Location of the base
2 homePos = location(40.444233, -7.375234, 820)
3 takeOffLocation = location(40.444233, -7.375234, 1200)
4 surveyNorth = mission {
5 name "Survey Area 1"
6 home homePos
7 takeOff takeOffLocation
8 surveyArea 3000, 10000, 500, "NORTH_EAST"
9 }

10 surveySouth = mission {
11 name "Survey Area 2"
12 home homePos
13 takeOff takeOffLocation
14 surveyArea 3000, 10000, 500, "SOUTH_EAST"
15 }
16 returnHome = mission {
17 name "Return to base"
18 home homePos
19 returnHomeAndLand()
20 }
21 //Execute the task
22 while (true) {
23 v1 = pick {
24 type ’UAV’
25 timeout 30.seconds
26 }
27 v2 = pick {
28 type ’UAV’
29 timeout 30.seconds
30 }
31 execute v1:
32 waitFor {battery(v1) >= 0.9}
33 then ((surveyAreaNorth / {battery(v1) < 0.3})
34 >> returnHome),
35 v2:
36 waitFor {battery(v2) >= 0.9}
37 then ((surveyAreaSouth / {battery(v2) < 0.3})
38 >> returnHome)
39 release v1 + v2
40 }

is executed upon the finishing of task1 (this is the sequence operator in Dolphin).

• So with this we get the following result: the drone will execute the simpleMission until a
battery level of 30% is reached after which it will do the returnHome task.

All of the code relating to selecting the UAV, assigning it the mission and releasing it is, as
can be seen, inside a while(true){...} loop. This means that the piece code found within it
will be executed until any foreign action is taken, meaning this system (if there are no hardware
failures or other outside events that may prevent the correct execution of the program) will run
automatically without the need of human input.

3.1.2 Example 2 - Multiple vehicles with concurrent independent missions

The example found in Listing 3 shows Dolphin controlling 2 independent drones that are each
running an area survey mission, in which they are supposed to cover a stretch of terrain. A use
case of this could be replacing forest guards as a single drone can cover much more ground than a
single human person, can work around the clock and besides from a higher initial investment the
long term costs of running this setup are far inferior to the long term costs of employing several
people to cover the same stretch of terrain.

In the scenario represented in Listing 3, we first start by defining the homePos and takeOffPosition

like we did in the previous example. Following that we define the main missions for the vehicles to
execute, with surveyAreaNorth = mission {...} and surveyAreaSouth = mission { ...

}. These missions are composed of a simple takeOff command to tell the drone to take off from

the ground followed by a surveyArea command. The survey area command basically tells the
drone to patrol an area of the dimensions provided, in this case an area that is 3km x 10km in size.
Finally we have the actual execution of the missions, which is also very similar to the previous
example where we, inside a while(true){...} loop, start off by selecting our 2 drones with pick.
After they have been selected, we assign them to a mission which is comprised of a composed task
similar to the task described in Section 3.1.1 with the exception that instead of executing the
simpleMission we are executing surveyAreaNorth and surveyAreaSouth, respectively.

3.1.3 Example 3 - Multiple vehicles with coordination between them

In this final test, found in Listing 4, we are going to show some of the more intricate capabilities of
Dolphin, specifically the capability to command vehicles based on what’s happening in with other
vehicles in the fleet. More specifically, with this example we want to show how the planning of a
setup that would attempt to always have 2 drones in the air and an arbitrary number of drones
(preferably more than 2) at the base, charging.

This scenario starts off very similarly to the previous 2, by defining the homePos and the
takeOffPosition. After this we define the missions that are to be executed with surveyAreaNorth

= mission {...} and surveyAreaSouth = mission {...}. These missions are the same as
the ones found in Section 3.1.2, so we will not go into detail about them. Now we can see the first
difference between this example and the one found in Section 3.1.2. After defining the missions,
we then have to select the UAVs to execute them with pick. This, as can be seen, is not inside
the while (true){...} loop, unlike the first two examples. This is due to the fact that because
we want to always maintain 2 drones in the air, we can’t pick drones that have just returned from
a mission and still need to charge, as this would cause the base station to wait for these drones
to charge to 90% before actually deploying them, leading to possibly having UAVs just sitting in
the charging station. To prevent this the following is done:

• We start by picking 2 drones regularly, outside of the while loop. We can’t pick them inside of
the loop because then we wouldn’t be able to distinguish the drones that have just returned
from a mission from the drones that have been at the base charging and are waiting to be
deployed.

• After picking the drones, we send them on the mission like in the previous examples. We
will not go into detail as further explanation can be found in Section 3.1.2.

• When the drones have finished their assigned mission we start selecting the next UAV’s to
perform the missions. Note that this selection is done before releasing the drones that have
been on mission and are just now returning to the base. Doing this selection before releasing
them means that there is no possibility of the base station choosing the drones that have
just returned as they are not marked as available. We save these selected drones into the
v1Temp and v2Temp variables.

• After we have chosen the two drones new that will be executing the missions, we can release
the drones that were out on mission and move the new drones into the v1 and v2 variables,
respectively.

• At last the loop will run again, with the v1 and v2 variables containing the correct drones
to execute the mission.

3.2 Implementation

This project is an extension to the Dolphin language and introduces a new way to communicate
to autonomous vehicles. This extension operates in the Platform Runtime of the architecture
that can be seen in Figure 1. With the introduction of MAVLink a new concept is introduced:
Missions. These missions are a protocol that tell the autonomous vehicle what to do and they
must follow the MAVLink specification. To implement these Missions while retaining the full

Listing 4: Multiple vehicles with interaction Dolphin Program

1 //Location of the base
2 homePos = location(40.444233, -7.375234, 820)
3 takeOffLocation = location(40.444233, -7.375234, 1200)
4 surveyNorth = mission {
5 name "Survey Area 1"
6 home homePos
7 takeOff takeOffLocation
8 surveyArea 3000, 10000, 500, "NORTH_EAST"
9 }

10 surveySouth = mission {
11 name "Survey Area 2"
12 home homePos
13 takeOff takeOffLocation
14 surveyArea 3000, 10000, 500, "SOUTH_EAST"
15 }
16 returnHome = mission {
17 name "Return to base"
18 home homePos
19 returnHomeAndLand()
20 }
21 v1 = pick {
22 type ’UAV’
23 timeout 30.seconds
24 }
25 v2 = pick {
26 type ’UAV’
27 timeout 30.seconds
28 }
29 //Execute the task
30 while (true) {
31 execute
32 v1:
33 waitFor {battery(v1) >= 0.9}
34 then ((surveyAreaNorth /
35 {battery(v1) < 0.3})
36 >> returnHome),
37 v2:
38 waitFor {battery(v2) >= 0.9}
39 then ((surveyAreaSouth /
40 {battery(v2) < 0.3})
41 >> returnHome)
42 v1Temp = pick {
43 type ’UAV’
44 timeout 30.seconds
45 }
46 v2Temp = pick {
47 type ’UAV’
48 timeout 30.seconds
49 }
50 release v1 + v2
51 v1 = v1Temp
52 v2 = v2Temp
53 }

Listing 5: Mission Class structure

1 public class Mission extends PlatformTask {
2 private List<DroneCommand> droneCommands;
3 public List<DroneCommands> getCommandList() {...}
4 public void setDroneCommands(List<DroneCommand> commands) { ... }
5 public int missionPoints() {...}
6 public List<MAVLinkMessage> toMissionMessages(MAVLinkNode dest) {...}
7 public Map<Integer, List<MAVLinkMessage>> droneCommandsToMissionItem(

MAVLinkNode dest) {...}
8 public List<NodeFilter> getRequirements() {...}
9 public TaskExecutor getExecutor() {}

10 }

functionality of Dolphin, we must use the already existing extendable structure which can be found
in Figure 5.

We extended this and made use of the Mission (an extension of PlatformTask) for the
definition of the missions to be assigned to vehicles, MissionExecutor (an extension of Plat-
formTaskExecutor) to define the current executing state of a certain vehicle performing a Task,
DroneCommand to define the points that define the commands that constitute the Mission
itself, MAVLinkNode (an extension of AbstractNode) which interprets the messages sent by
the UAV and then serves the UAV’s information using the already defined methods in Dolphin
(e.g. Battery capacity). This class also contains the MissionUploadProtocol and Mission-
DownloadProtocol, which are responsible for handling the Mission Protocol uploading and
downloading, respectively. Finally we have the MAVLinkCommunications class that manages
the base station’s UDP server and is responsible by sending and receiving information to and from
the UAVs.

An updated diagram of Dolphin with these extensions can be visualized in Figure 6. Not all
the classes and methods are represented in this Figure as they are not essential to understanding
how the Dolphin language was extended to handle MAVLink.

3.2.1 Mission

The Mission class’ structure is defined as can be found in Listing 5.
As we can see in Listing 5, each Mission contains a List<DroneCommand> that stores all of the

commands that compose the mission, note that not all of these commands are part of the actual
Mission protocol of MAVLink, some of the commands stored are there to add extra functionality
and are completely handled by this extension and not MAVLink or Dolphin.

The method getCommandList is a simple getter for these commands.
The method setDroneCommands sets the commands for this mission but also does some extra

work to make them compatible with the MAVLink protocol. The List<DroneCommand> that is
accepted by it is the simple list of commands that comes from the Dolphin DSL using the methods
found in Table 2. This simple list needs some additions before it is possible to send it to the UAV
that are done in the setDroneCommands like adding the Mission Item Count (the first message
to be sent to the UAV, as can be seen in Figure 4) and adding the actual start command to the
mission (setting the UAVs mode to AUTO), amongst others.

The missionPoints method is a simple getter for the amount of items in this mission.
The method toMissionMessages converts all of the points that extend MissionPoint into

MAVLinkMessage instances that can actually be sent to the drone. This method does not
convert every DroneCommand because not all of them actually belong to the Mission, instead
some of the DroneCommand found here are a part of extra functionality added by this extension
and need to be handled specially, by droneCommandsToMissionItem.

Figure 5: Dolphin Class Structure (not all Dolphin related classes are represented as they are not
necessary to illustrate how this extension operates.)

Figure 6: The Dolphin base structure with the MAVLink extensions added to them.

Listing 6: DroneCommand Class structure

1 public abstract class DroneCommand {
2 public abstract Collection<MAVLinkMessage> toMavLinkMessage(MAVLinkNode

dest);
3 }

Listing 7: MissionPoint Class structure

1 public abstract class MissionPoint extends DroneCommand {
2 Position position;
3 MissionPoint(Position position) {...}
4 public Collection<MAVLinkMessage> toMavLinkMessage(MAVLinkNode dest) {
5 return toMavLinkMessage(dest, 0);
6 }
7 public abstract Collection<MAVLinkMessage> toMavLinkMessage(MAVLinkNode

dest, int seq);
8 public abstract int messageCount();
9 }

The method droneCommandsToMissionItem translates all the messages that don’t belong to
the Mission Protocol of MAVLink and creates a Map<Integer, List<MAVLinkMessage>> with
them. These messages must be sent at the correct time, which is done with the key of the map.
The key represents the seq number at which the corresponding value (List<MAVLinkMessage>)
must be sent, so the base station waits for the UAV to report when it has reached a certain point
seq, and then consults the Map to see if there are any messages to send at that point and if so
what those messages are. Any message with the key seq = 0 is sent before the mission even gets
uploaded (e.g. the Mission Count message that informs the drone of how many items to expect
needs to be sent before starting the upload of the mission and it isn’t actually a mission item and
therefore is not contained in the messages returned by toMissionMessages).

The getRequirements method returns any possible extra requirements that the mission might
have in the selection of vehicles to fulfill it (e.g. A mission that want’s to capture photos will require
a vehicle equipped with a camera).

The getExecutor method creates and returns a new MissionExecutor connected to this
mission. This executor can then be assigned a MAVLinkNode to complete it.

3.2.2 DroneCommand

The DroneCommand class’ structure is defined as can be found in Listing 6.
The method toMavLinkMessage returns the corresponding list of MAVLinkMessages that

should be sent to the UAV.
This class represents the base of any sort of message that can be sent to a UAV and all the

possible Mission commands extends this class.

3.2.3 MissionPoint

The MissionPoint class’ structure is defined as can be found in Listing 7.
This class extends the DroneCommand class and defines the subset of messages that belong to the

Mission Protocol of MAVLink (all subclasses of this class originate a collection of MAVLinkMes-
sage’s sub-class msg_mission_item, and uses message id’s to distinguish between each different
type of command).

Listing 8: MissionExecutor Class structure

1 public class MissionExecutor extends PlatformTaskExecutor {
2 protected void onStart() {...}
3 protected CompletionState onStep() {...}
4 protected void onCompletion() {...}
5 public List<MAVLinkMessage> getBaseMessages() {...}
6 public Map<Integer, List<MAVLinkMessage>> getBaseDroneCommands() {...}
7 public void consume(msg_mission_item_reached) { ... }
8 public void consume(msg_mission_ack mission_received) { ... }
9 }

Because most of the MAVLink mission items are based on the UAV moving to or performing
some task in a given location, we store the Position of the MissionPoint and require it to
instantiate any mission point. Some commands however do not require a position (e.g. the speed

command). In these special cases, the position can be null and since the transformation of the
MissionPoint into MAVLinkMessage is performed by the extensions of this class, each of these
extensions can handle this null in it’s own way.

The toMavLinkMessage(MAVLinkNode dest) method that is inherited from the DroneCommand
class is overridden with a call to the newly defined toMavLinkMessage(MAVLinkNode dest,

int seq). This is because on the contrary of the DroneCommand, the MissionPoint requires the
seq number(it’s number in the execution order of the mission) for it to be able to instantiate the
msg_mission_item correctly.

The messageCount method returns the amount of MAVLinkMessage that this MissionPoint
needs to encode it’s objective (e.g. the surveyArea command requires more than 1 message to

define it’s complete area of search). This is needed to calculate the seq numbers of following
MissionPoint.

This class is extended by most of the possible commands found in Table 2 (not all as some of
them have special features that are handled by this extension), where they each have their own
sub class with their individual values, parameters and different ways of creating the corresponding
MAVLinkMessage.

3.2.4 MissionExecutor

The MissionExecutor class is defined as can be found in Listing 8
This class is an extension of the PlatformTaskExecutor and therefore inherits it’s responsi-

bilities, so it is responsible for maintaining the correct execution of a Mission by a UAV.
The onStart method, inherited from PlatformTaskExecutor serves the purpose of begin-

ning the execution of the given task with the given UAV. Before the UAV can start the mission
though, the mission needs to be uploaded and some basic checks need to be performed to assert
that the UAV is ready for the mission. First, we start by checking if the UAV is already on another
mission and if so, we must stop it’s current mission and remove it from the drone so we can upload
the new one. After this, we must also check if the UAV is armed or, in other words, ready to be
deployed. Finally, we call the upload(MissionExecutor) method in MissionUploadProtocol
which handles actually sending all the messages to the drone (the mission is sent using the protocol
found in Figure 4).

The onStep method, also inherited from PlatformTaskExecutor is used to check in on the
progress of the mission that is being executed. It is called periodically by Dolphin and returns the
current CompletionState of the execution.

The onCompletion method, also inherited from PlatformTaskExecutor gets called when
the CompletionState is DONE or when Dolphin wants to terminate the mission sooner than
anticipated (if for example, the UAV gets low on battery). This method sets the UAV back into

Listing 9: MAVLinkNode Class structure

1 public class MAVLinkNode extends AbstractNode {
2 public MAVLinkNode(int sysId, SocketAddress addr) {...}
3 public int getMavLinkId() {...}
4 public Position getPosition() { ... }
5 public Payload getPayload() { ... }
6 public void release() { ... }
7 public void send(MAVLinkMessage message) { ... }
8 public msg_heartbeat getLastHBReceived() { ... }
9 public msg_sys_status getLastSystemStatus() { ... }

10 public double batteryRemaining() { ... }
11 public MissionDownloadProtocol getDownloadProtocol() { ... }
12 public MissionUploadProtocol getUploadProtocol() { ... }
13 public void setExecutor(MissionExecutor executor) { ... }
14 void consume(msg_global_position_int msg) { ... }
15 void consume(msg_heartbeat msg) { ... }
16 void consume(msg_sys_status status) { ... }
17 }

a ”Wait for further instructions” mode, preparing it to receive the next mission.
The getBaseMessages method returns the messages created by toMissionMessages of the

corresponding Mission class.
The getBaseDroneCommands method returns the messages created by droneCommandsToMissionItems

of the corresponding Mission class.
The consume method accepts a msg_mission_item_reached, which is a sub class of the

MAVLinkMessage class and represents the message sent by the UAV to report that it has
reached a certain point in the mission. The MissionExecutor must monitor these messages to
keep track of what seq the drone is currently executing, not only to know it’s progress but also to
know when to send the DroneCommand found in getBaseDroneCommands, which have to be
sent at a specific point in the mission.

The consume method accepts a msg_mission_ack_mission_received, which is a sub class
of the MAVLinkMessage class and represents the message sent by the UAV to report that it
has correctly received the mission and is ready to start (this message is sent at the end of the
MissionProtocol mission upload, as can be seen in Figure 4).

3.2.5 MAVLinkNode

The MAVLinkNode class’ structure is defined as can be found in Listing 9.
This class is an extension of the AbstractNode class and represents a UAV that’s in the

network.
To initialize an instance of this class, we must provide the sysId of the UAV (this is provided by

the UAV as a part of any MAVLinkMessage) and the addr (the address to send the datagrams
meant for that UAV, also known as the UAV’s IP address).

The methods getMavLinkId, getPosition, getPayload are simple getters for the sysId

of the UAV, the current position and the UAV’s Payload which is the equipment that it is carrying
(e.g. cameras, sensors, etc).

The method release releases the UAV from it’s current mission, should it be executing any
and marks it as available to be picked for any mission.

The method send sends the provided MAVLinkMessage to the UAV. It does this by calling
the send(MAVLinkMessage, MAVLinkNode) method of the MAVLinkCommunications class
which is described in Section 3.2.6.

Listing 10: MAVLinkCommunications Class structure

1 public class MAVLinkCommunications extends Thread {
2 private final MessageHandler<MAVLinkNode, MAVLinkMessage> msgHandler;
3 public static MAVLinkCommunications getInstance() { ... }
4 private MAVLinkCommunications() { ... }
5 public void run() { ... }
6 private void handleIncomingMessages() { ... }
7 public void send(MAVLinkMessage msg, MAVLinkNode node) { ... }
8 public void terminate() { ... }
9 }

The methods getLastHBReceived and getLastSystemStatus returns the last msg_heartbeat
and msg_sys_status that the base station has received from the UAV, respectively.

The method batteryRemaining returns the current battery remaining on the UAV, in a scale
of 0-1 (0 being 0% and 1 being 100%).

The methods getDownloadProtocol and getUploadProtocol return the handlers for MAVLink’s
Mission Protocol download and upload, respectively. We have not discussed the download aspect
of the Mission Protocol as it wasn’t very used in this project, but it is possible for the base station
to download the mission that the drone is currently executing using the MissionDownloadPro-
tocol.

The method setExecutor sets the current MissionExecutor that the UAV is executing.
The various implementations of the consume methods exist to receive all of the important

information that the UAV is sending to the base station and handle it accordingly. The received
packets are the following: msg_global_position_int, msg_heartbeat and msg_sys_status,
which provide information about the UAV’s current position, it’s current vital information (what
mode it is on, the type of vehicle it is, etc) and the status of the UAV (battery, communication
status, on board controllers, etc), respectively.

3.2.6 MAVLinkCommunications

The MAVLinkCommunications class’ structure is defined as can be found in Listing 10.
This class is responsible for all communication to and from the vehicles and redirecting the re-

ceived information to the corresponding classes that will actually read and analyse this information.
This redirection is achieved by using the MessageHandler<MAVLinkNode, MAVLinkMessage>, a
class that is provided by Dolphin and it’s purpose is to redirect the correct MAVLinkMessage
to the correct MAVLinkNode.

This class follows the Singleton pattern and the only way to instance it is by calling getInstance
(), which will create a new instance of the class if it doesn’t exist yet or return the already existing
instance of it if it does exist. The singleton pattern means that there can only be one instance of
this class living at any point of execution in the program.

In the constructor of the class, the UDP server is initiated with a new DatagramSocket and
the all of the redirections for each of the messages that are of interest are registered into the
MessageHandler.

The method run is inherited from the Thread class and is where the DatagramSocket created
in the constructor is put to use, as we create an infinite loop that is constantly listening to any
incoming messages, using the method handleIncomingMessages.

The method handleIncomingMessages is what actually takes all of the information received
via the DatagramSocket and transforms it into the correct MAVLinkMessage, which is then
passed on to the MessageHandler to be delivered to the correct instance of MAVLinkNode.

The method send is responsible for sending the MAVLinkMessage to it’s due destination.
If first starts by transforming this class into an instance of MAVLinkPacket, which contains all

of the information in a byte[] ready to be sent via the DatagramSocket.
The method terminate stops the infinite while loop that is started inside run and closes the

DatagramSocket meaning that after executing this method the base station can no longer send
or receive any information.

4 Tests

The examples shown is this report were created with the test setup illustrated in Figure 7.

Figure 7: Representation of the testing setup

• The test location chosen was Serra da Estrela, a location where this technology could be of
great use, as the terrain is very mountainous and therefore very hard for humans to navigate.
Using a UAV in this scenario not only has the inherent advantage of being able to cover a
lot more ground but also means that we do not need a human to traverse this hard terrain.
It is also a very sparsely populated area with a great forest surrounding it, making it a great
test location for our use case (early detection of fires). This is where our charging dock and
base station running Dolphin would be found. A picture of this location can be found in
Figure 8.

• An instance of QGroundControl [7], our chosen flight control software, to monitor all of
the running UAVs, their current position, mission and general status in a GUI instead of
just from the command line. There are many other flight controllers that are compatible
with MAVLink but QGroundControl presents a simple, easy to understand and use interface
and native compatibility with ArduPilot. An image of this software running without any
connected vehicles can be found in Figure 8.

• A Docker container [8] that is running 2 instances of our auto pilot of choice, ArduPilot
in SITL mode [9]. This was our choice as it provides great support for MAVLink and is
the recommended flight simulator by QGroundControl. An image of the Docker container
running ArduPilot can be found in Figure 9.

• Finally we have an instance of Dolphin with our MAVLink extension running in the base
station, controlling the UAVs through UDP. An image of Dolphin running can be seen in
Figure 10.

4.1 Results of the test

We recorded a run of the example found in Section 3.1.2 which can be found in https://youtu.
be/PUhr133ClN4. We made some changes to the example as it would take too long if we waited
for the battery to reach 30% so we raised the threshold to 70%. So what we observed was:

https://youtu.be/PUhr133ClN4
https://youtu.be/PUhr133ClN4

Figure 8: The location of the tests

(a) ArduPilot for Vehicle 1, initiating
(b) ArduPilot for Vehicle 2, running a
mission

Figure 9: ArduPilot Examples

• Before we initialized Dolphin, both UAVs were in their home location with no assigned
mission, as expected (00:00 in the video).

• After we initialized Dolphin, both UAVs were found and successfully took off and were each
assigned their own separate missions, which they ran successfully. This can be seen in Figure
11 (00:15 in the video).

• When the Dolphin base station detects that the UAVs battery have hit the 70% threshold,
the UAV is removed from his current mission and receives a new one, instructing it to return
to his home location and attempt to land. This can be seen in Figure 12 where the drone
only has the mission point 1 - Land (02:00 in the video).

5 Conclusion and Future work

We presented an implementation of the MAVLink communication protocol to the Dolphin frame-
work, how it was integrated into the already existing Dolphin API and how it’s versatility can
be used to solve various types of problems in our society. This extension adds an extensive list
of supported vehicles as the MAVLink protocol is one of if not the most used communication

Figure 10: Dolphin instance running

Figure 11: Screenshot of QGroundControl with two UAV’s running their own separate missions

protocol in autonomous vehicles. The extensive list of DSL mission commands that are present in
this extension combined with the very powerful operators that are present in Dolphin generates
an extremely broad list of possibilities.

As future work, we would like to test this extension on real vehicles which would also allow
us to test the existing camera features that could not be used as we could only use simulations.
We would also like to add add more functionality related to the gathering of information and use
of external sensors for example if we could possibly use a smoke detector to check if the region
the drone is flying over is on on fire. We would also like to work on a extensible sensor API that
would allow each end user to add support for their own specialized sensors, which would broaden
the use cases of this technology even more. To implement this broader sensor support, we would
have to handle the MAVLink micro-services that allow the base station to communicate with the
sensors on the drone.

Figure 12: Screenshot of QGroundControl with a UAV that has reached 29% battery

References

[1] K. Lima, E. R. B. Marques, J. Pinto, and J. B. Sousa, “Dolphin: a task orchestration lan-
guage for autonomous vehicle networks,” in Proc. 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’18). IEEE, 2018, pp. 8294–8301.

[2] J. Pinto, P. Dias, R. Martins, J. Fortuna, E. Marques, and J. Sousa, “The LSTS toolchain for
networked vehicle systems,” in Proc. 2013 MTS/IEEE OCEANS, ser. OCEANS’13. IEEE,
2013, pp. 1–9.

[3] K. Lima, E. R. B. Marques, J. Pinto, and J. B. Sousa, “Programming networked vehicle
systems using Dolphin – field tests at REP’17,” in Proc. IEEE/MTS Oceans’18. IEEE, 2018.

[4] “Mavlink: Micro air vehicle communication protocol,” https://mavlink.io/en/.

[5] “Ardupilot: Fully featured reliable open source autopilot software.” https://ardupilot.org/.

[6] F. Dearle, Groovy for Domain-Specific Languages. Packt Publishing, 2015.

[7] “Qgroundcontrol: Intuitive and powerful ground control station for the mavlink protocol.”
http://qgroundcontrol.com/.

[8] “Docker container,” https://github.com/edrdo/ardupilot-sitl-docker.

[9] “Ardupilot: Sitl simulator (software in the loop),” https://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html.

A DSL Commands

Table 2: All supported MAVLink mission commands.

DSL Commands
Commands: Description:
name(String name) Set the name of the mission to name

See more in the next page

https://mavlink.io/en/
https://ardupilot.org/
http://qgroundcontrol.com/
https://github.com/edrdo/ardupilot-sitl-docker
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html

Continuation of DSL Commands
Commands: Description:
home(double lat, double lon, double

hae)

Set the home position to the position with latitude
lat, longitude lon and height hae

goPos(double lat, double lon, double

hae)

Add a go-to point to the mission, that tells the
vehicle to go to the position with latitude lat, lon-
gitude lon and height hae

takeOff(Position p, float pitch) Take off from a position p with a pitch of pitch.
The pitch argument is optional and defaults to 15
degrees.

move(double north, double east,

double up)

Move the drone relative to it’s position by north

meters north, east meters east, up meters up.
moveFromHome(double north, double

east, double up)

Move the drone relative to it’s home position by
north meters north, east meters east, up meters
up.

moveAndLoiterPos(double north, double

east, double up, double radius)

Move the drone relative to it’s last position by
north meters north, east meters east, up meters
up. When the drone arrives at this position, it will
start to go in circles with radius of radius around
it (Loiter) forever. The radius argument is op-
tional and defaults to 15m.

moveAndLoiterTurns(double north,

double east, double up, int turns,

double radius)

Move the drone relative to it’s last position by
north meters north, east meters east, up meters
up. When the drone arrives at this position, it will
do turns circles around the position with radius
radius. The radius argument is optional and de-
faults to 15m.

moveAndLoiterTime(double north,

double east, double up, int time,

double radius)

Move the drone relative to it’s last position by
north meters north, east meters east, up meters
up. When the drone arrives at this position, it
will circle the position for the specified time (in
seconds) with the given radius. The radius ar-
gument is optional and defaults to 15m.

moveAndLoiterFromHome(double north,

double east, double up, double radius

)

Move the drone to it’s home position by north me-
ters north, east meters east, up meters up. When
the drone arrives at this position, it will start to
go in circles with radius of radius around it (Loi-
ter) forever. The radius argument is optional and
defaults to 15m.

moveAndLoiterTurnsFromHome(double

north, double east, double up, int

turns, double radius)

Move the drone relative to it’s home position by
north meters north, east meters east, up meters
up. When the drone arrives at this position, it will
do turns circles around the position with radius
radius. The radius argument is optional and de-
faults to 15m.

moveAndLoiterTimeFromHome(double

north, double east, double up, int ,

double radius)

Move the drone relative to it’s home position by
north meters north, east meters east, up meters
up. When the drone arrives at this position, it
will circle the position for the specified time (in
seconds) with the given radius. The radius ar-
gument is optional and defaults to 15m.

See more in the next page

Continuation of DSL Commands
Commands: Description:
loiterPos(Position position, double

radius)

Move the drone to the specified position and
when it arrives, circle it with the given radius.
The radius argument is optional and defaults to
15m.

loiterPos(double latitude, double

longitude, double height, double

radius

Move the drone to the specified latitude,
longitude and height and when it arrives, circle
it with the given radius. The radius argument is
optional and defaults to 15m.

loiterTurns(double latitude, double

longitude, double height, int turns,

double radius)

Move the drone to the specified latitude,
longitude and height and when it arrives, cir-
cle it turns times with the given radius. The
radius argument is optional and defaults to 15m.

loiterTime(double latitude, double

longitude, double height, int time,

double radius)

Move the drone to the specified latitude,
longitude and height and when it arrives, cir-
cle it for time seconds with radius of radius. The
radius argument is optional and defaults to 15m.

landingPoint(double latitude, double

longitude, double height, float yaw,

int landMode)

Instruct the drone to attempt to land at the
given latitude, longitude and height at the
given yaw angle. The yaw argument is optional
and defaults to NaN, which lets the drone choose
the yaw to land with. The landMode argument
is also optional and can take the values of the
PRECISION LAND MODE class, which
are PRECISION_LAND_MODE_DISABLED (= 0),

PRECISION_LAND_MODE_OPPORTUNISTIC (=

1), PRECISION_LAND_MODE_REQUIRED (= 2)

the default value is PRECISION_LAND_MODE.

PRECISION_LAND_MODE_DISABLED.
landingPoint(Position position, float

yaw, int landMode)

Instruct the drone to attempt to land at the given
position at the given yaw angle. The yaw argu-
ment is optional and defaults to NaN, which lets the
drone choose the yaw to land with. The landMode

argument is also optional and can take the values
of the PRECISION LAND MODE class,
which are PRECISION_LAND_MODE_DISABLED (=

0), PRECISION_LAND_MODE_OPPORTUNISTIC (=

1), PRECISION_LAND_MODE_REQUIRED (= 2)

the default value is PRECISION_LAND_MODE.

PRECISION_LAND_MODE_DISABLED.
returnHome() Instruct the drone to move to it’s home position.
returnHomeAndLoiter(double radius) Instruct the drone to move to it’s home position

and go in circles around it with the radius. The
radius argument is optional and defaults to 15m.

See more in the next page

Continuation of DSL Commands
Commands: Description:
returnHomeAndLand(float yaw, int

landMode)

Instruct the drone to return to it’s home position
and land at the given yaw angle. The yaw argu-
ment is optional and defaults to NaN, which lets the
drone choose the yaw to land with. The landMode

argument is also optional and can take the values
of the PRECISION LAND MODE class,
which are PRECISION_LAND_MODE_DISABLED (=

0), PRECISION_LAND_MODE_OPPORTUNISTIC (=

1), PRECISION_LAND_MODE_REQUIRED (= 2)

the default value is PRECISION_LAND_MODE.

PRECISION_LAND_MODE_DISABLED.
speed(double newSpeed, int speedType) Instruct the drone to travel at the given newSpeed

. speedType is optional and allows the user the
speed that he is refering to. 0 corresponds to Air-
Speed and is the default, 1 corresponds to Ground
Speed, 2 to Climb Speed and 3 to Descent Speed.
The last 2 should be used when changing the alti-
tude of the drone.

altitude(double newAltitude) Instruct the drone to climb or descend to the
newAltitude (The altitude should be in meters
and should be from the sea level).

delay(int seconds) Delay the mission for seconds second.
surveyArea(double length, double

width, double direction_change,

String direction)

Instructs the drone to survey an area (The base
position of which is the last position of the drone)
direction of the base point that is length me-
ters long, width meters wide. The argument
direction_change is optional and defaults to 50
meters and is used to set the space between each
vertical pass. The argument direction is optional
and has the default value of "NORTH_WEST". It can
take the values "NORTH_WEST", "NORTH_EAST",

"SOUTH_WEST", "SOUTH_EAST".
surveyArea(Position p, double

length, double width, double

direction_change, String direction)

Instructs the drone to survey an area with the
base position p to the direction that is length

meters long, width meters wide. The argument
direction_change is optional and defaults to 50
meters and is used to set the space between each
vertical pass.. The argument direction is op-
tional and has the default value of "NORTH_WEST
". It can take the values "NORTH_WEST", "

NORTH_EAST", "SOUTH_WEST", "SOUTH_EAST".
capturePhoto() Instruct the drone to take a picture. (This feature

is not available in simulations).
captureSeveralPhotos(int photoCount,

int interval)

Instruct the drone to photoCount pictures at an
interval of interval. The interval is optional
and defaults to 2 seconds.

captureUntilStop(int interval) Instruct the drone to take pictures at an interval
of interval seconds. The drone will keep tak-
ing pictures until it is told to stop. The argument
interval is optional and defaults to 2 seconds.

See more in the next page

Continuation of DSL Commands
Commands: Description:
stopCapturing() Instruct a drone that was taking pictures in the

captureUntilStop mode to stop capturing.

End of DSL Commands

	INTRODUCTION
	Background
	Dolphin
	MAVLink

	The MAVLink Plugin for Dolphin
	Examples
	Example 1 - Single Vehicle
	Example 2 - Multiple vehicles with concurrent independent missions
	Example 3 - Multiple vehicles with coordination between them

	Implementation
	Mission
	DroneCommand
	MissionPoint
	MissionExecutor
	MAVLinkNode
	MAVLinkCommunications

	Tests
	Results of the test

	Conclusion and Future work
	DSL Commands

